Beyond Trypsin: Strategies to Improve Mass Spec Sequence Coverage and PTM Analysis

Michael M. Rosenblatt mike.rosenblatt@promega.com

July 10, 2012

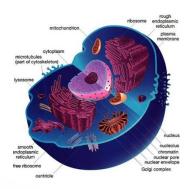
Presentation Outline

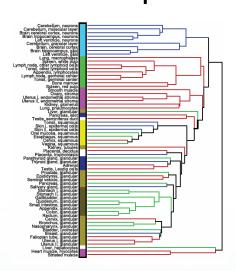
- I. Introduction to Bottom-Up Proteomics
- II. The Role of Trypsin
- III. Trypsin Enhancers
- IV. When Trypsin is not enough...
 - 1) Lys-C a tool for proteolysis under denaturing conditions
 - 2) Other proteases to increase coverage
 - 3) Membrane protein analysis
 - 4) Post-Translational Modification (PTM) analysis
- V. Glycosidases

Applications of Mass Spec in Biology

Mass spec can answer multiple questions in biology

Protein Structure (HDX Mass Spec)


Protein Interactions

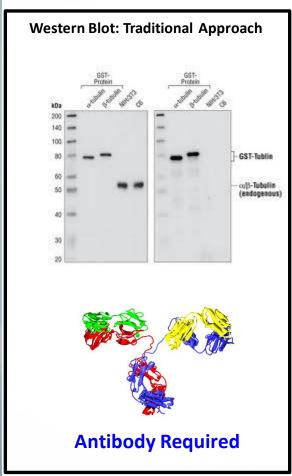

Biomarker Discovery

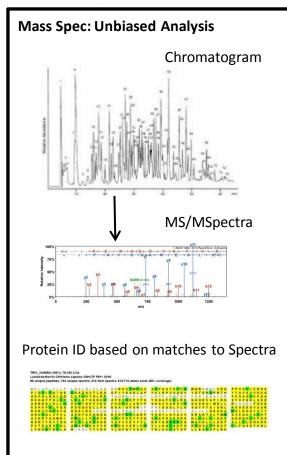
Subcellular Localization

Protein Expression

Drug Discovery

Drug Binding Studies (Chemical Proteomics)



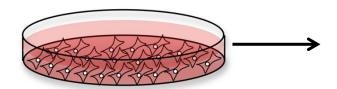

Biologics

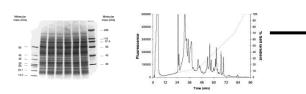
Confidential and Proprietary. Not for Further Disclosure

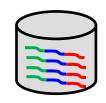
Why is Mass Spec a Powerful Tool for Biology?

Mass Spec Advantages:

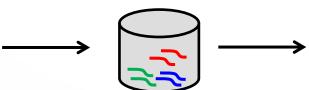
- No pre-existing knowledge required - unbiased
- Ability to identify 1000's of proteins in single run
- Quantitative
- Highly reproducible
- High dynamic range
- Automatable
- Eliminates need for Antibody


Bottom-Up Proteomics: Unbiased Profiling of Complex Protein Extracts



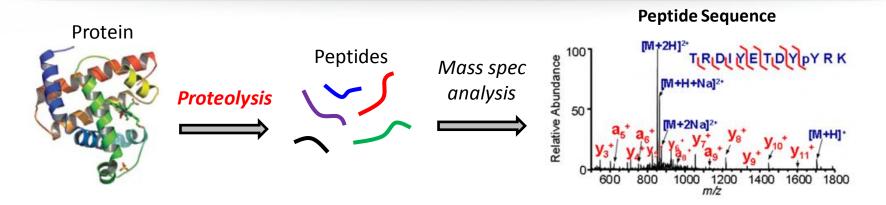

Proteases convert protein to peptides to be analysed by the Mass Spec

<u>Step #1</u>: Sample Preparation (Pure Protein, Protein Complex, IP, Cells, Tissue, Serum etc.) <u>Step #2</u>: Reduction of Sample Complexity (SDS-PAGE, SCX/HILIC, affinity enrichment, subcellular fractionation etc.)


<u>Step #3</u>: Protein Isolation (excise gel band, collect fractions etc.)

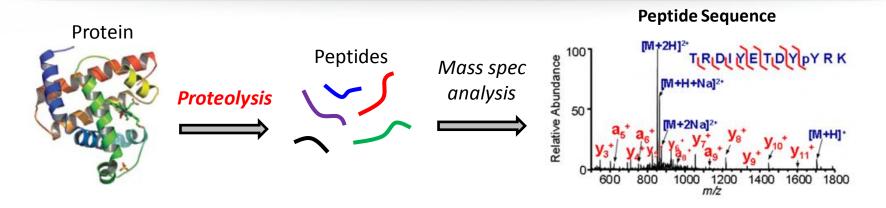
Step #4: Protein digestion (trypsin or other proteases)

Step #5: LC-MS/MS Analysis



Step #6: Software assisted protein identification

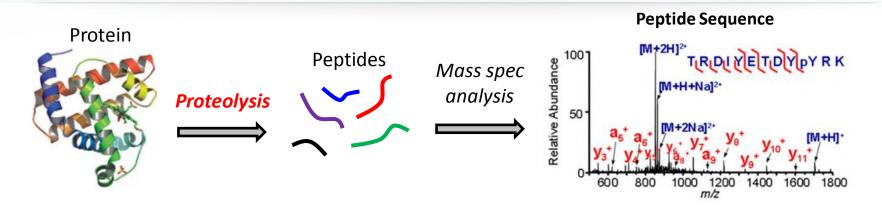
Why is Proteolysis Required?



The **range of masses** is limited in the typical mass spec (250-4000 daltons). This is not a problem for small molecule measurements, but large molecules are challenging...

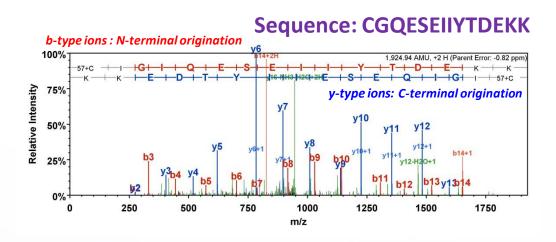
The problem is solved by using site-specific endoproteinases (proteases).

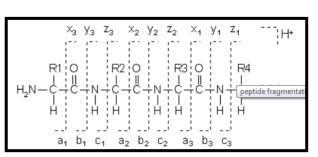
Why Trypsin?



Why is Trypsin viewed as the "Gold Standard" for bottom up proteomics?

Why Trypsin....Multiple Reasons!


- ••••
- ✓ Average size of peptides is between 700-1500 daltons (ideal for MS analysis)
- ✓ All peptides have a C-terminal charge (due to K/R)
- ✓ Highly active
- ✓ Highly specific
- ✓ Autolysis can be controled by lysine/arginine modification


How Does Mass Spec "Sequence" Proteins?

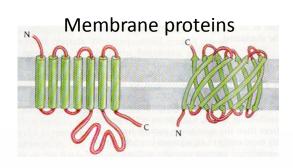
Steps in the Process:

- 1. Protein sequences are stored in a database (i.e. UNIPROT)
- 2. Sequences are **digested** *in silico* (based on the appropriate protease)
- 3. Peptide masses are measured and MS/MS spectra recorded
- Peptide sequence candidates which match the mass of the peptides measured (within a certain tolerance) are selected and a theoretical MS/MS spectrum is generated (i.e. a bar-code)
- 5. Bar-code is then matched to the MS/MS spectrum.

The spacing between the ions correspond to the masses of the amino acids

What are the Challenges With Proteolysis?

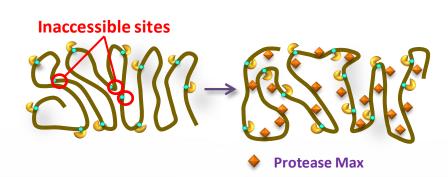
Challenges:


- Protein folded too tightly Protease can't access
- Protein is insoluble and require additives

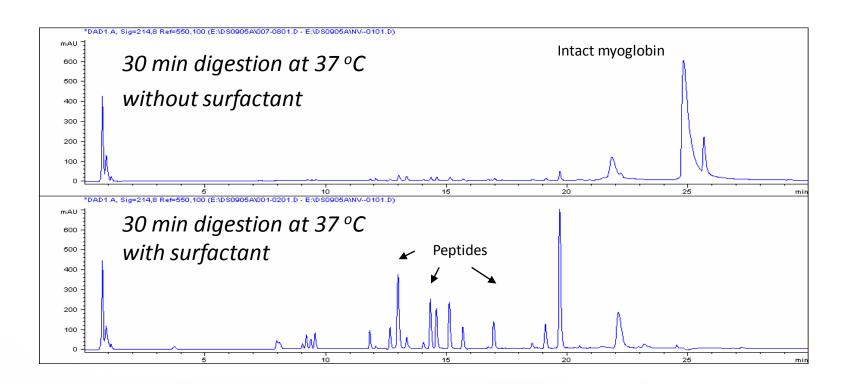
Solutions:

- Urea, Guanidine HCl and organic solvents (e.g., acetonitrile) –denaturing agents
- Detergents such as Triton X-100 and SDS

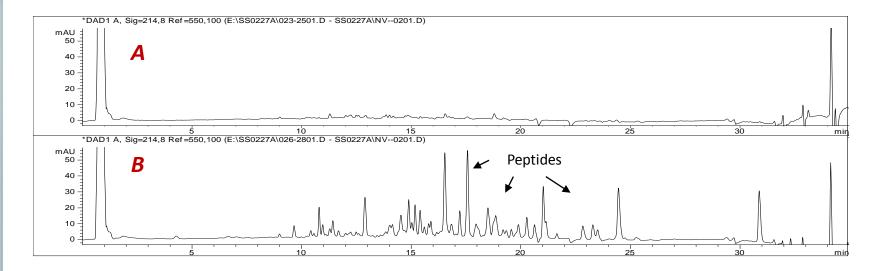
Limitations:


- Protease Inhibition
- Unwanted side effects (i.e., protein modification).
- Detergents hurt the hardware (LC and Mass Spec)!

ProteaseMAX[™] Surfactant


- Solubilizing and denaturing properties of surfactant no effect on LC-MS/MS
- Decomposes within 8 hours at Room Temperature (in solution)
- Improves digestion efficiency for compact/tightly folded proteins
- Solubilizes Membrane Proteins

ProteaseMAX[™] Surfactant: Rapid Digestion


Myoglobin (Proteolytically resistant protein) is rapidly digested in presence of ProteaseMAX™

ProteaseMAX[™] Surfactant: Solubilization

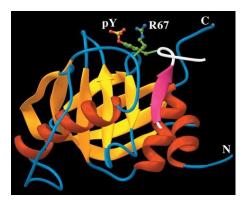
ProteaseMAX™ readily solubilizes the membrane protein bacteriorhodopsin

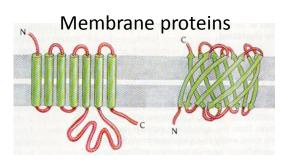
- Bacteriorhodopsin is insoluble in aqueous solutions and resistant to proteolysis (panel A)
- With the surfactant, this protein solubilizes within 1-2 minutes at room temperature and easily digested (panel B)

ProteaseMAX™ Surfactant: Conclusions

ProteaseMAX™ surfactant:

- Improved digestion of Stably folded proteins
- Improved solubility of membrane proteins
- Faster overall digestion kinetics
- Higher throughput
- No cleanup required




But, When is Trypsin Not Enough?

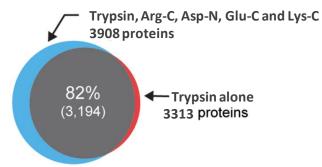
- Substantial number of tryptic peptides are too long or too short for Mass Spec analysis
- Tryptic cleavage sites might not be accessible due to PTM's (i.e phosphorylation, glycosylation, histone methylation/acetylation)
- Certain proteins are not efficiently digested by trypsin (i.e. membrane proteins and proteins in tight conformation)
- Additional proteases allow for more sequence coverage and protein ID's (especially in complex samples)

Alternative Proteases Overcome the Limitations of Trypsin

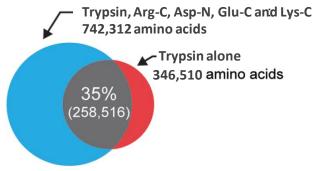
Examples to be discussed:

- Using other proteases to increase protein identifications
- improve digestion efficiency of compact proteins with Lys-C
- "Sequence" membrane proteins with Elastase, Pepsin, and Thermolysin
- Complementation of trypsin in Histone analysis with Arg-C
- Identification of phosphorylation sites on MAPK requires Trypsin, Chymotrypsin, and Elastase

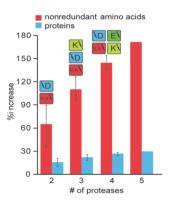
Alternative Proteases For Mass Spec



Examples of the Most Commonly Used Proteases (in addition to trypsin)


Protease	Cleavage site	Example of use
Lys-C	NNNNK NNN (K is lysine)	 Active under denaturing conditions Produces larger peptides that trypsin Useful for ETD applications
Glu-C	NNNNE NNN (E is glutamate) Glu-C can also cleave at aspartate residue also depending on the pH	 Alternative to trypsin when trypsin produces peptides outside of required mass window (too small or larger) E cleavage in Phosphate buffer (pH = 7.8) E and D in ammonium buffers.
Asp-N	NNNN DNNN (D is aspartate)	Alternative to trypsin when trypsin produces peptides outside of required mass window (too small or larger)
Chymotrypsin	NNNN(F/Y/W) NNN (F, Y and W are aromatic residues phenylalanine, tyrosine, and tryptophan)	Digests hydrophobic proteins (i.e . membrane proteins)
Arg-C	NNNNR NNN (R is arginine) (can also cleave c-terminal side of K)	Analysis of histone posttranslational modifications
Pepsin	Nonspecific protease (advantage – digestion at low pH)	Hydrogen-deuterium Exchange Mass Spec
Thermolysin	Nonspecific protease (advantage – digestion at high temperature)	Digestion of proteolytically difficult proteinsStructural Studies
Elastase	Nonspecific protease	Used to increase protein coverageProtein structural studies

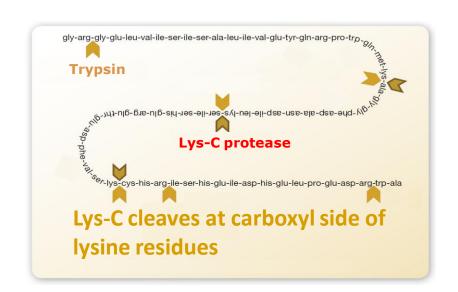
Alternative Proteases Increase Protein Identifications by 20 %



Identified proteins increased from 3313 to 3908 (20%), upon applying alternative proteases

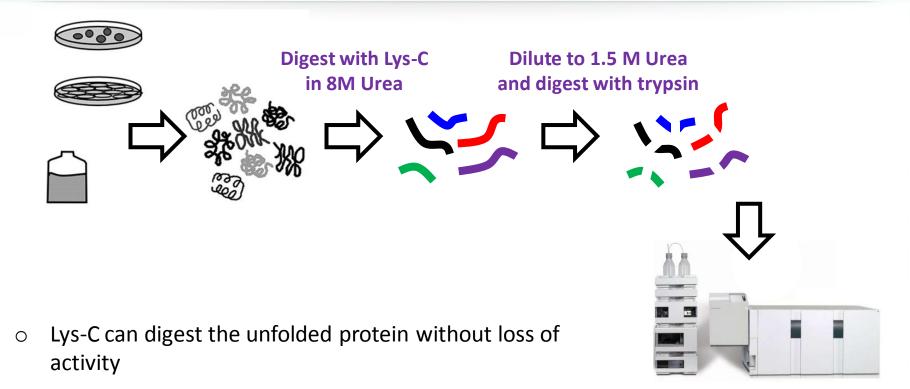
Sequence coverage increased by 172%

Number of identified protein and sequence coverage gradually increased upon adding additional alternative proteases


Adding additional proteases improves proteomic analysis

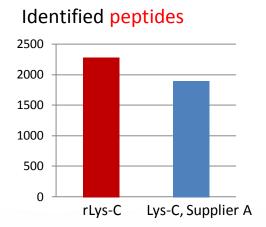
Swaney et al. (2010) J. of Proteome Res. 9:1323-1329

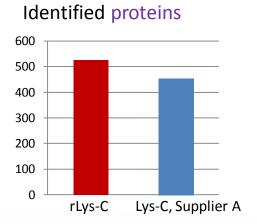
Lys-C: A Valuable Tool for Proteomics Studies



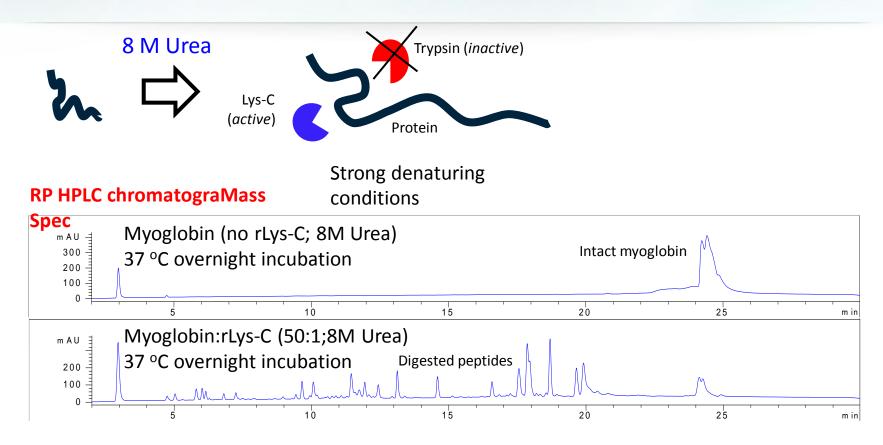
- ☐ As *highly active and specific* as trypsin
- ☐ Unlike trypsin, lys-C remains active under highly denaturing conditions
 (8M Urea) allowing for digestion of unfolded proteins (which don't digest when folded)
- ☐ Generates larger peptides than trypsin (useful for ETD studies)

An Alternative Workflow: Sequential Digestion with Lys-C and Trypsin

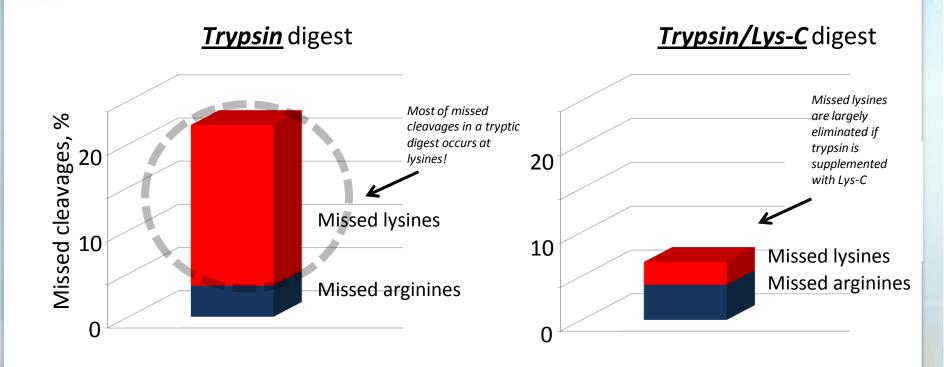

- Sequential digestion with Lys-C followed by trypsin is often used to ensure high digestion efficiency
- Many proteins require denaturation prior to digestion


A Recombinant Lys-C: A Low-Cost Alternative to the Native Enzyme

- Promega has developed a novel recombinant Lys-C (\$8/μg versus \$30/μg)
- rLys-C is as active and robust as the native enzyme with performance comparable to other suppliers
- rLys-C is also active under denaturing conditions

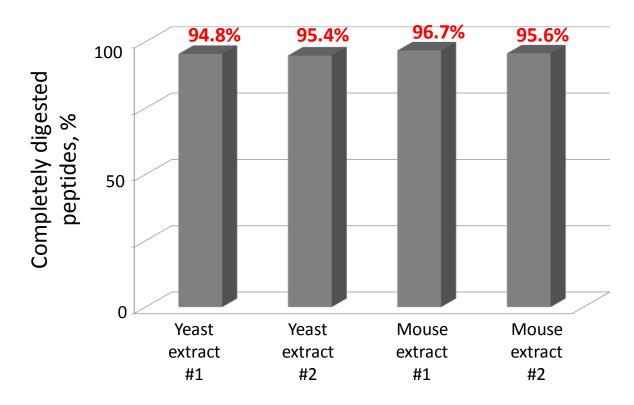

Total Protein Coverage (Yeast Extract)

rLys-C Can Tolerate Denaturation



Recombinant Lys-C retains activity under strongly denaturing conditions (8M Urea) digesting a proteolytically resistant protein

A Trypsin/Lys-C Mixture: Improved Proteolytic Efficiency

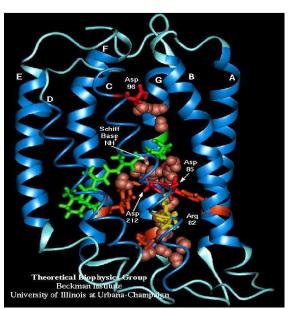

Supplementing trypsin with Lys-C dramatically improves digestion efficiency

Product available later this year: e-mail mike.rosenblatt@promega.com or gary.kobs@promega .com for details

Robust and Consistent Proteolysis of Complex Protein Mixtures with Trypsin/Lys-C

Digestion of yeast and mouse protein extracts with Trypsin/rLys-C mix

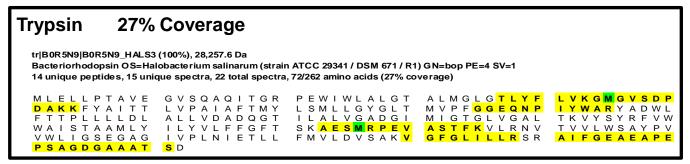
The remaining missed cleavages represent a few percent of total peptide population and predominantly occur at (R/K)/(D/E) sites or at peptide N-termini

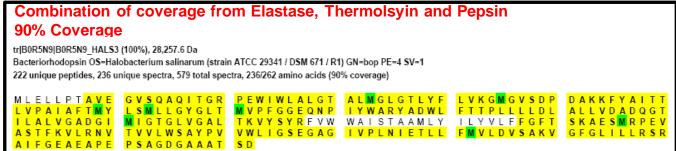

Membrane Proteins: A Proteolytic Challenge

- Membrane Proteins contain a large number of hydrophobic residues and therefore are challenging for trypsin to digest
- They also require solubilizing agents for proteolysis, another problem for trypsin
- Additional proteases, like Pepsin, elastase, and thermolysin, which will cut around hydrophobic sequences are beneficial

Bacteriorhodopsin:

- Prototypical membrane protein (7-TM GPCR)
- Trypsin does not cleave any of the 7 helices


Multiple Proteases Improves Coverage of Membrane Proteins



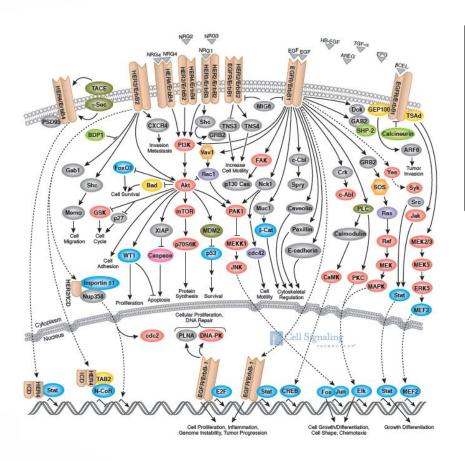
Bacteriorhodopsin:

MLELLPTAVEGVSQAQITGRPEW<u>IWLALGTALMGLGTLYFLV</u>KGMGVSDPDAKKFY<u>AITTL</u>
<u>VPAIAFTMYLSMLL</u>GYGLTMVPFGGEQNPI<u>YWARYADWLFTTPLLLLDL</u>ALLVDADQGT<u>IL</u>
<u>ALVGADGIMIGTGLVGAL</u>TKVYSYR<u>FVWWAISTAAMLYILYVLFF</u>GFTSKAESMRPEVASTF
K<u>VLRNVTVVLWSAYPVVWLI</u>GSEGAGIVPLNIE<u>TLLFMVLDVSAKVGFGLILL</u>RSRAIFGEA
EAPEPSAGDGAAATSD

- Red and Blue are alternating tryptic peptides
- Underlined sequences correspond to embedded TM regions

The combination of 3 additional enzymes increased overage by over 60 % and identified 7/8 trans-membrane domains

The Principle of PTM analysis by MS/MS



The spacing between the fragment ions will have a specific mass shift that is PTM specific

Cell Signaling: A Post-Translational Modification (PTM) Driven Process

- Signal Transduction is central to cell growth and plays a central role in multiple diseases including cancer and diabetes
- Much of the signalling is governed by PTM's like phosphorylation, acetylation, ubquitination, and O-GlcNac to name a few
- Mass Spec is a powerful tool for both site-specific Identification of not only PTM modified proteins but the specific site of modification

Some Major PTM's

PTM	Affected Residue	
Acetylation	Lysine	
Methylation	Lysine (up to 2 methyl groups) /Arginine (up to 3 methyl groups)	
Ubiquitination	Lysine	
Phosphorylation	Serine /Threonine /Tyrosine	
O-GlcNac	Serine /Threonine /Tyrosine	
O-glycans	Serine /Threonine	
N-glycans	Asparagine	
Nitration	Cysteine/tyrosine	

Arg-C Complements Trypsin for Analysis of Histone Modifications

N-terminus of Histone H4:

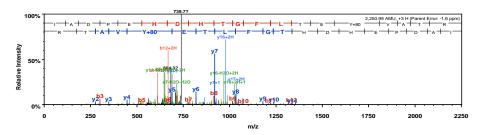
Methylated site identified with trypsin

Di-methylated site identified with trypsin

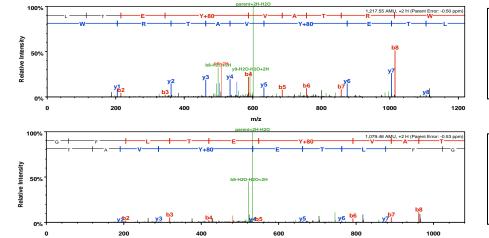
Acetylated sites identified with trypsin

Additional methylated site identified with Arg-C

Additional dimethylated sites identified with Arg-C


Additional acetylated site identified with Arg-C

Protease Combinations Increase Identification of Phospho Sites


Identification of Tyrosine Phosphorylation in Erk1/2

Trypsin - IADPEHDHTGFLTE(pY)VATR

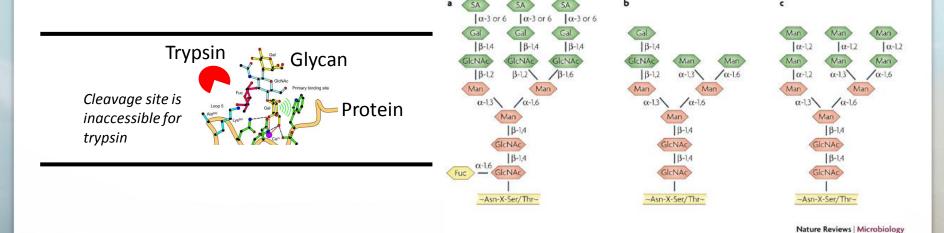
MS/MS spectrum is of poor quality

Chymotrypsin – LTE(pY)VATRW

Note complimentary yand b-ion pairs around pY

Elastase – GFLTE(pY)VAT

Note complimentary yand b-ion pairs around pY


Data courtesy of MS Bioworks LLC

Glycosidases Have Multiple Roles in Proteomics

<u>Glycosidases are useful for</u>:

- Glycomics
- Glycoproteomics
- Improving protease coverage by unmasking protease sites

Some Common Glycosidases



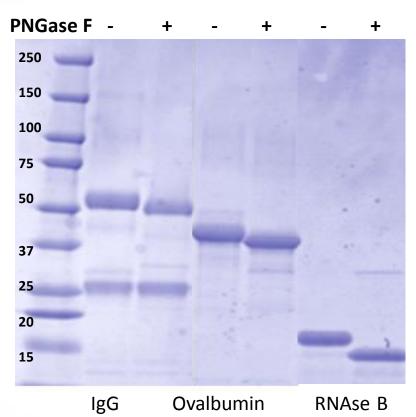
Glycosidase	Substrate	Product	Change Detected
PNGase F	XXNX(S/T)XX	XXDX(S/T)XX	1 dalton Mass Shift - N to D conversion
	N = Asn (glycan containing)	D = Asp	
Endo-H	XXNX(S/T)XX	XXN(GlcNac)X(S/T)XX	203 daltons – Mass of one GlcNac
	N = Asn (glycan containing)	N(GlcNac) = Asparagine bonded to a single GlcNac	
Protein Deglycosylation	All glycoproteins	XXDX(S/T)XX	1 dalton for N- linked glycans
Mixture (contains both N and O-glycosidases)		D = Asp (O-linked amino acids are unchanged)	 No change for O- linked, but no glycan attached, so peptide is
			unmodified.

Glycosidases will launch in Fall 2012

PNGase F /Endo H Cleavage Specificity

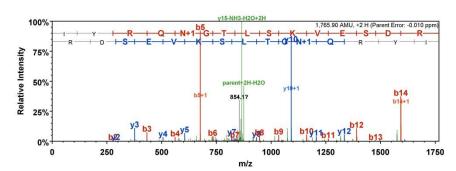
Endo H is unable to cleave N-linked complex-type glycans

A Recombinant PNGase F



- Protein is based on the 34 kDa protein secreted by flavobacterium meningosepticum
- Total Activity is comparable to the endogenous enzyme
- Active under native and mildly denaturing conditions and therefore very effective for proteomic workflows
- Note: After removal of the glycan, the Asparagine (N) residue is converted to Aspartic Acid (D)

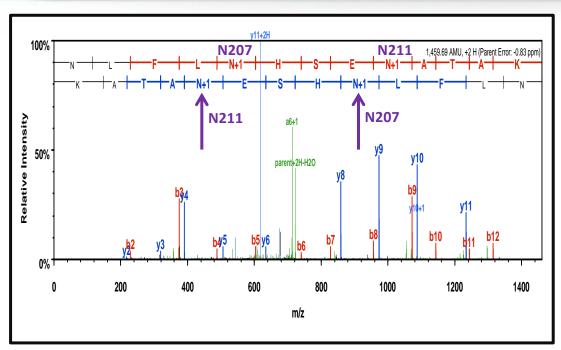
Characterization of PNGase F Treated Proteins



Protein Sequence:

Alpha-1-acid glycoprotein OS=Bos taurus GN=ORM1 PE=2 SV=1
16 unique peptides, 22 unique spectra, 32 total spectra, 132/202 amino acids (65% coverage)

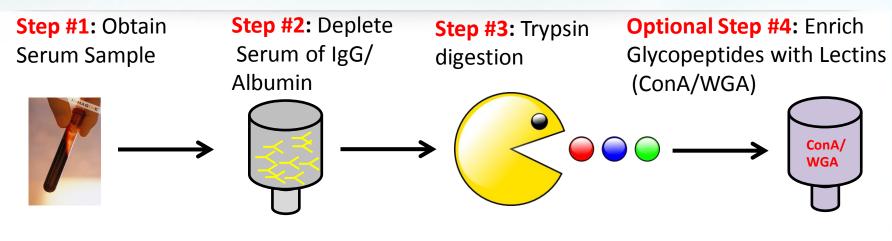
MALLWALAVL SHLPLLDAQS PECANLMTVA PITNATMDLL SGKWFYIGSAFRNPEYNKSA RAIQAAFFYL EPRHAEDKLI TREYQTIEDK CVYNCSFIKI LASWNGTKN VGVSFYADKFEVTQEQKKEF LDVIKCIGIQ ESEIIYTDEK KDACGPLEKQ HEEERKKETE


Identification of Glycosylation Sites:

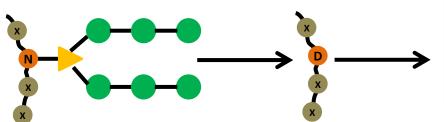
Band shifted to lower MW indicates removal of N-glycan chains

PNGase F Treatment Improves Sequence Coverage

Haptoglobin (Untreated)


Haptoglobin (PNGase F treated)

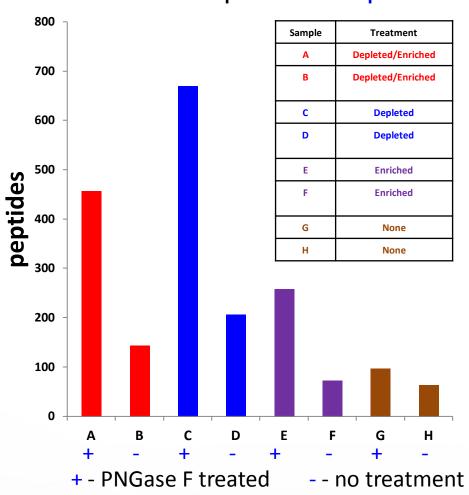
- Majority of sequence covered without PNGase F treatment
- However, highlighted glycan was not observed due to attached glycan
- Treatment with PNGase F gave sites of attachment ((N 207 and N211) were identified)
- Site of attachement confirmed by MS/MS analysis (see above spectrum)


An Example of a Typical Serum Glycopeptide identification Workflow

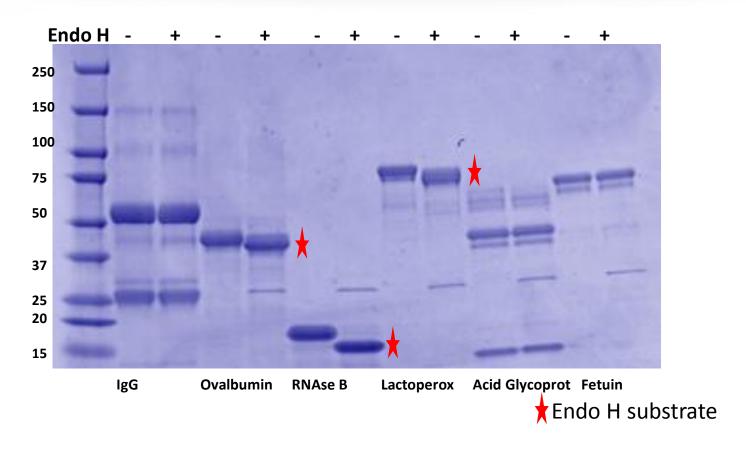


Step #5: Glycosidase (PNGase F) Treatment

Step #5: LC-MS/MS Analysis Step #6: Software assisted Protein Identification

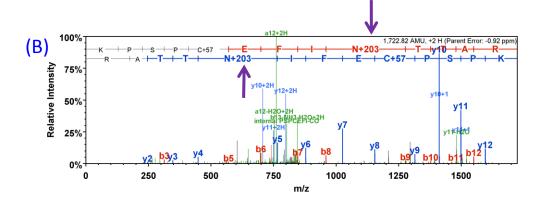


PNGase F Increases Identification of Glycopeptides


Total Deamidated SpC – Serum Sample

- Albumin/IgG was removed from Serum
- WGA and ConA lectins were used to enrich samples
- Depletion alone appears to yield the greatest number of glycopeptides identified

Endo H Treatment is Effective in Deglycosylating Glycoproteins



Endo H is reactive toward some, but not all, glycoprotein substrates. Thus, a powerful biochemical tool to determine glycan compositions

Endo H Treatment of Lactoperoxidase Identifies Glycosylation Sites

Using a combination of Trypsin and Endo H, followed by Mass Spec analysis, the site of glycan attachment (N203) could be determined, precisely.

Conclusions

- Trypsin is the best protease to start with when preparing Mass Spec samples.
- The use of a Mass Spec compatible solubilizing agent (i.e. ProteaseMax™) can dramatically improve the efficiency of proteolysis.
- Using alternative proteases will increase the number of protein ID's.
- Alternative proteases may also increase your identification and confidence in assignment of PTM's.
- For identification of glycosylation sites, the use of either PNGase F or Endo H may be required.

Product	Catalog#	Quantity
Trypsin Gold	V5280	100 μg
Trypsin, Sequencing Grade	V5111, V5113 (Frozen)	100 μg
Immobilized Trypsin	V9012, V9013	2, 4 mL
Lys-c	V1071	5 μg
Recombinant Lys-c	V1671	15 μg
Arg-C	V1881	10 μg
Asp-N	V1621	2 μg
Glu-C	V1651	50 μg
Chymotrypsin	V1061, V1062	25 μg, 100 μg
Thermolysin	V4001	25 mg
Pepsin	V1959	250 mg
Elastase	V1891	5 mg
Protease Max	V2071, V2072	1 mg, 5 mg

New Glycosidases from Promega

Product	Catalog #	Quantity
PNGase F	V4831	500 mIU
Endo H	V4871, V4875	10,000 and 50,000 units
Deglycosylation Mixture	V4931	100 μL
Fetuin	V4961	500 μg

These products should be available some time in Q4, 2012